Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38668821

RESUMEN

Curdlan, a ß-1,3/1,6-glucan found in Alcaligenes faecalis (A. faecalis) wall, activates innate and humoral immunity. The aim of this study is to evaluate whether pretreated rats with A. faecalis A12C could prevent sepsis disturbances and identify the immunomodulatory mechanisms involved. Experiments occurred in two stages: a survival study with 16 rats randomly divided into septic (SC) (n = 8) and septic pretreated (SA) (n = 8) groups and 45 rats divided into four groups: healthy (AGUSAN) (n = 9), septic (AGUIC) (n = 13), septic pretreated (AGUIA) (n = 14), and healthy pretreated (AGUSTO) (n = 9). Sepsis was induced by cecal ligation and puncture after 30 days of A. faecalis A12C pretreatment or without. SA group had a higher survival rate of 58% vs. 16% for SC group (P < 0.05). Overall, AGUIA showed better status than AGUIC (P < 0.01). Higher monocytosis was found in AGUIA and AGUSTO vs. AGUIC and AGUSAN, respectively (P < 0.05). A gradual increase in curdlan fecal concentration was observed in AGUIA during pretreatment. Fecal concentrations of Escherichia coli significantly decreased in AGUIA and AGUSTO. Bacterial load in urine, peritoneal lavage fluid (PLF), and bronchoalveolar lavage fluid (BALF) decreased (P < 0.05) in AGUIA vs. AGUIC. Finally, lower inflammation was observed in serum, BALF, and PLF, with reduced IL-6, IL-10, IL-1ß, and TNF-α, along with less damage in lungs and peritoneum in AGUIA vs. AGUIC. These findings suggest the connection between curdlan-produced by A. faecalis A12C-with the immune system and the reduction in severity of experimental sepsis.

2.
J Clin Med ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542033

RESUMEN

Background: The ability to predict a long duration of mechanical ventilation (MV) by clinicians is very limited. We assessed the value of machine learning (ML) for early prediction of the duration of MV > 14 days in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). Methods: This is a development, testing, and external validation study using data from 1173 patients on MV ≥ 3 days with moderate-to-severe ARDS. We first developed and tested prediction models in 920 ARDS patients using relevant features captured at the time of moderate/severe ARDS diagnosis, at 24 h and 72 h after diagnosis with logistic regression, and Multilayer Perceptron, Support Vector Machine, and Random Forest ML techniques. For external validation, we used an independent cohort of 253 patients on MV ≥ 3 days with moderate/severe ARDS. Results: A total of 441 patients (48%) from the derivation cohort (n = 920) and 100 patients (40%) from the validation cohort (n = 253) were mechanically ventilated for >14 days [median 14 days (IQR 8-25) vs. 13 days (IQR 7-21), respectively]. The best early prediction model was obtained with data collected at 72 h after moderate/severe ARDS diagnosis. Multilayer Perceptron risk modeling identified major prognostic factors for the duration of MV > 14 days, including PaO2/FiO2, PaCO2, pH, and positive end-expiratory pressure. Predictions of the duration of MV > 14 days showed modest discrimination [AUC 0.71 (95%CI 0.65-0.76)]. Conclusions: Prolonged MV duration in moderate/severe ARDS patients remains difficult to predict early even with ML techniques such as Multilayer Perceptron and using data at 72 h of diagnosis. More research is needed to identify markers for predicting the length of MV. This study was registered on 14 August 2023 at ClinicalTrials.gov (NCT NCT05993377).

3.
Front Med (Lausanne) ; 11: 1338542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504911

RESUMEN

Introduction: Prevalence and mortality of the acute respiratory distress syndrome (ARDS) in intensive care units (ICU) are unacceptably high. There is scarce literature on post-operative sepsis-induced ARDS despite that sepsis and major surgery are conditions associated with ARDS. We aimed to examine the impact of post-operative sepsis-induced ARDS on 60-day mortality. Methods: We performed a secondary analysis of a prospective observational study in 454 patients who underwent major surgery admitted into a single ICU. Patients were stratified in two groups depending on whether they met criteria for ARDS. Primary outcome was 60-day mortality of post-operative sepsis-induced ARDS. Secondary outcome measures were potential risk factors for post-operative sepsis-induced ARDS, and for 60-day mortality. Results: Higher SOFA score (OR 1.1, 95% CI 1.0-1.3, p = 0.020) and higher lactate (OR 1.9, 95% CI 1.2-2.7, p = 0.004) at study inclusion were independently associated with ARDS. ARDS patients (n = 45) had higher ICU stay [14 (18) vs. 5 (11) days, p < 0.001] and longer need for mechanical ventilation [6 (14) vs. 1 (5) days, p < 0.001] than non-ARDS patients (n = 409). Sixty-day mortality was higher in ARDS patients (OR 2.7, 95% CI 1.1-6.3, p = 0.024). Chronic renal failure (OR 4.0, 95% CI 1.2-13.7, p = 0.026), elevated lactate dehydrogenase (OR 1.7, 95% CI 1.1-2.7, p = 0.015) and higher APACHE II score (OR 2.7, 95% CI 1.3-5.4, p = 0.006) were independently associated with 60-day mortality. Conclusion: Post-operative sepsis-induced ARDS is associated with higher 60-day mortality compared to non-ARDS post-operative septic patients. Post-operative septic patients with higher severity of illness have a greater risk of ARDS and worse outcomes. Further investigation is needed in post-operative sepsis-induced ARDS to prevent ARDS.

4.
Crit Care Med ; 52(2): e106-e107, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38240522
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166946, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37939908

RESUMEN

Sepsis is the most common cause of death from infection in the world. Unfortunately, there is no specific treatment for patients with sepsis, and management relies on infection control and support of organ function. A better understanding of the underlying pathophysiology of this syndrome will help to develop innovative therapies. In this regard, it has been widely reported that endothelial cell activation and dysfunction are major contributors to the development of sepsis. This review aims to provide a comprehensive overview of emerging findings highlighting the prominent role of mitochondria in the endothelial response in in vitro experimental models of sepsis. Additionally, we discuss potential mitochondrial targets that have demonstrated protective effects in preclinical investigations against sepsis. These promising findings hold the potential to pave the way for future clinical trials in the field.


Asunto(s)
Células Endoteliales , Sepsis , Humanos , Células Endoteliales/metabolismo , Sepsis/metabolismo , Mitocondrias/fisiología
7.
Crit Care ; 27(1): 416, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907946

RESUMEN

Although the defining elements of "acute respiratory distress syndrome" (ARDS) have been known for over a century, the syndrome was first described in 1967. Since then, despite several revisions of its conceptual definition, it remains a matter of debate whether ARDS is a discrete nosological entity. After almost 60 years, it is appropriate to examine how critical care has modeled this fascinating syndrome and affected patient's outcome. Given that the diagnostic criteria of ARDS (e.g., increased pulmonary vascular permeability and diffuse alveolar damage) are difficult to ascertain in clinical practice, we believe that a step forward would be to standardize the assessment of pulmonary and extrapulmonary involvement in ARDS to ensure that each patient can receive the most appropriate and effective treatment. The selection of treatments based on arbitrary ranges of PaO2/FiO2 lacks sufficient sensitivity to individualize patient care.


Asunto(s)
Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Pulmón , Resultado del Tratamiento , Cuidados Críticos
8.
Crit Care Explor ; 5(11): e0997, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954898

RESUMEN

OBJECTIVES: Treatments that prevent sepsis complications are needed. Circulating lipid and protein assemblies-lipoproteins play critical roles in clearing pathogens from the bloodstream. We investigated whether early inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) may accelerate bloodstream clearance of immunogenic bacterial lipids and improve sepsis outcomes. DESIGN: Genetic and clinical epidemiology, and experimental models. SETTING: Human genetics cohorts, secondary analysis of a phase 3 randomized clinical trial enrolling patients with cardiovascular disease (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab [ODYSSEY OUTCOMES]; NCT01663402), and experimental murine models of sepsis. PATIENTS OR SUBJECTS: Nine human cohorts with sepsis (total n = 12,514) were assessed for an association between sepsis mortality and PCSK9 loss-of-function (LOF) variants. Incident or fatal sepsis rates were evaluated among 18,884 participants in a post hoc analysis of ODYSSEY OUTCOMES. C57BI/6J mice were used in Pseudomonas aeruginosa and Staphylococcus aureus bacteremia sepsis models, and in lipopolysaccharide-induced animal models. INTERVENTIONS: Observational human cohort studies used genetic PCSK9 LOF variants as instrumental variables. ODYSSEY OUTCOMES participants were randomized to alirocumab or placebo. Mice were administered alirocumab, a PCSK9 inhibitor, at 5 mg/kg or 25 mg/kg subcutaneously, or isotype-matched control, 48 hours prior to the induction of bacterial sepsis. Mice did not receive other treatments for sepsis. MEASUREMENTS AND MAIN RESULTS: Across human cohort studies, the effect estimate for 28-day mortality after sepsis diagnosis associated with genetic PCSK9 LOF was odds ratio = 0.86 (95% CI, 0.67-1.10; p = 0.24). A significant association was present in antibiotic-treated patients. In ODYSSEY OUTCOMES, sepsis frequency and mortality were infrequent and did not significantly differ by group, although both were numerically lower with alirocumab vs. placebo (relative risk of death from sepsis for alirocumab vs. placebo, 0.62; 95% CI, 0.32-1.20; p = 0.15). Mice treated with alirocumab had lower endotoxin levels and improved survival. CONCLUSIONS: PCSK9 inhibition may improve clinical outcomes in sepsis in preventive, pretreatment settings.

9.
Clin Epigenetics ; 15(1): 156, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37784136

RESUMEN

BACKGROUND: Albuterol is the first-line asthma medication used in diverse populations. Although DNA methylation (DNAm) is an epigenetic mechanism involved in asthma and bronchodilator drug response (BDR), no study has assessed whether albuterol could induce changes in the airway epithelial methylome. We aimed to characterize albuterol-induced DNAm changes in airway epithelial cells, and assess potential functional consequences and the influence of genetic variation and asthma-related clinical variables. RESULTS: We followed a discovery and validation study design to characterize albuterol-induced DNAm changes in paired airway epithelial cultures stimulated in vitro with albuterol. In the discovery phase, an epigenome-wide association study using paired nasal epithelial cultures from Puerto Rican children (n = 97) identified 22 CpGs genome-wide associated with repeated-use albuterol treatment (p < 9 × 10-8). Albuterol predominantly induced a hypomethylation effect on CpGs captured by the EPIC array across the genome (probability of hypomethylation: 76%, p value = 3.3 × 10-5). DNAm changes on the CpGs cg23032799 (CREB3L1), cg00483640 (MYLK4-LINC01600), and cg05673431 (KSR1) were validated in nasal epithelia from 10 independent donors (false discovery rate [FDR] < 0.05). The effect on the CpG cg23032799 (CREB3L1) was cross-tissue validated in bronchial epithelial cells at nominal level (p = 0.030). DNAm changes in these three CpGs were shown to be influenced by three independent genetic variants (FDR < 0.05). In silico analyses showed these polymorphisms regulated gene expression of nearby genes in lungs and/or fibroblasts including KSR1 and LINC01600 (6.30 × 10-14 ≤ p ≤ 6.60 × 10-5). Additionally, hypomethylation at the CpGs cg10290200 (FLNC) and cg05673431 (KSR1) was associated with increased gene expression of the genes where they are located (FDR < 0.05). Furthermore, while the epigenetic effect of albuterol was independent of the asthma status, severity, and use of medication, BDR was nominally associated with the effect on the CpG cg23032799 (CREB3L1) (p = 0.004). Gene-set enrichment analyses revealed that epigenomic modifications of albuterol could participate in asthma-relevant processes (e.g., IL-2, TNF-α, and NF-κB signaling pathways). Finally, nine differentially methylated regions were associated with albuterol treatment, including CREB3L1, MYLK4, and KSR1 (adjusted p value < 0.05). CONCLUSIONS: This study revealed evidence of epigenetic modifications induced by albuterol in the mucociliary airway epithelium. The epigenomic response induced by albuterol might have potential clinical implications by affecting biological pathways relevant to asthma.


Asunto(s)
Asma , Metilación de ADN , Niño , Humanos , Epigenómica , Asma/tratamiento farmacológico , Asma/genética , Albuterol/farmacología , Albuterol/uso terapéutico , Epigénesis Genética , Broncodilatadores/farmacología , Broncodilatadores/uso terapéutico , Células Epiteliales , Estudio de Asociación del Genoma Completo
10.
Eur Respir J ; 62(6)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37802634

RESUMEN

BACKGROUND: The epigenetic mechanisms of asthma remain largely understudied in African Americans and Hispanics/Latinos, two populations disproportionately affected by asthma. We aimed to identify markers, regions and processes with differential patterns of DNA methylation (DNAm) in whole blood by asthma status in ethnically diverse children and youth, and to assess their functional consequences. METHODS: DNAm levels were profiled with the Infinium MethylationEPIC or HumanMethylation450 BeadChip arrays among 1226 African Americans or Hispanics/Latinos and assessed for differential methylation per asthma status at the CpG and region (differentially methylated region (DMR)) level. Novel associations were validated in blood and/or nasal epithelium from ethnically diverse children and youth. The functional and biological implications of the markers identified were investigated by combining epigenomics with transcriptomics from study participants. RESULTS: 128 CpGs and 196 DMRs were differentially methylated after multiple testing corrections, including 92.3% and 92.8% novel associations, respectively. 41 CpGs were replicated in other Hispanics/Latinos, prioritising cg17647904 (NCOR2) and cg16412914 (AXIN1) as asthma DNAm markers. Significant DNAm markers were enriched in previous associations for asthma, fractional exhaled nitric oxide, bacterial infections, immune regulation or eosinophilia. Functional annotation highlighted epigenetically regulated gene networks involved in corticosteroid response, host defence and immune regulation. Several implicated genes are targets for approved or experimental drugs, including TNNC1 and NDUFA12. Many differentially methylated loci previously associated with asthma were validated in our study. CONCLUSIONS: We report novel whole-blood DNAm markers for asthma underlying key processes of the disease pathophysiology and confirm the transferability of previous asthma DNAm associations to ethnically diverse populations.


Asunto(s)
Asma , Epigenoma , Niño , Humanos , Adolescente , Epigénesis Genética , Asma/genética , Metilación de ADN , Perfilación de la Expresión Génica , NADPH Deshidrogenasa/genética
11.
Intensive Care Med ; 49(10): 1181-1190, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37736783

RESUMEN

PURPOSE: The aim of this study was to characterize differences in directives to limit treatments and discontinue invasive mechanical ventilation (IMV) in elderly (65-80 years) and very elderly (> 80 years) intensive care unit (ICU) patients. METHODS: We prospectively described new written orders to limit treatments, IMV discontinuation strategies [direct extubation, direct tracheostomy, spontaneous breathing trial (SBT), noninvasive ventilation (NIV) use], and associations between initial failed SBT and outcomes in 142 ICUs from 6 regions (Canada, India, United Kingdom, Europe, Australia/New Zealand, United States). RESULTS: We evaluated 788 (586 elderly; 202 very elderly) patients. Very elderly (vs. elderly) patients had similar withdrawal orders but significantly more withholding orders, especially cardiopulmonary resuscitation and dialysis, after ICU admission [67 (33.2%) vs. 128 (21.9%); p = 0.002]. Orders to withhold reintubation were written sooner in very elderly (vs. elderly) patients [4 (2-8) vs. 7 (4-13) days, p = 0.02]. Very elderly and elderly patients had similar rates of direct extubation [39 (19.3%) vs. 113 (19.3%)], direct tracheostomy [10 (5%) vs. 40 (6.8%)], initial SBT [105 (52%) vs. 302 (51.5%)] and initial successful SBT [84 (80%) vs. 245 (81.1%)]. Very elderly patients experienced similar ICU outcomes (mortality, length of stay, duration of ventilation) but higher hospital mortality [26 (12.9%) vs. 38 (6.5%)]. Direct tracheostomy and initial failed SBT were associated with worse outcomes. Regional differences existed in withholding orders at ICU admission and in withholding and withdrawal orders after ICU admission. CONCLUSIONS: Very elderly (vs. elderly) patients had more orders to withhold treatments after ICU admission and higher hospital mortality, but similar ICU outcomes and IMV discontinuation. Significant regional differences existed in withholding and withdrawal practices.


Asunto(s)
Ventilación no Invasiva , Respiración Artificial , Humanos , Anciano , Diálisis Renal , Desconexión del Ventilador , Respiración , Unidades de Cuidados Intensivos , Extubación Traqueal
12.
Crit Care Med ; 51(12): 1638-1649, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37651262

RESUMEN

OBJECTIVES: To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS). DESIGN: A development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts. SETTING: A network of multidisciplinary ICUs. PATIENTS: A total of 1,303 patients with moderate-to-severe ARDS managed with lung-protective ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed and tested prediction models in 1,000 ARDS patients. We performed logistic regression analysis following variable selection by a genetic algorithm, random forest and extreme gradient boosting machine learning techniques. Potential predictors included demographics, comorbidities, ventilatory and oxygenation descriptors, and extrapulmonary organ failures. Risk modeling identified some major prognostic factors for ICU mortality, including age, cancer, immunosuppression, Pa o2 /F io2 , inspiratory plateau pressure, and number of extrapulmonary organ failures. Together, these characteristics contained most of the prognostic information in the first 24 hours to predict ICU mortality. Performance with machine learning methods was similar to logistic regression (area under the receiver operating characteristic curve [AUC], 0.87; 95% CI, 0.82-0.91). External validation in an independent cohort of 303 ARDS patients confirmed that the performance of the model was similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87-0.94). CONCLUSIONS: Both machine learning and traditional methods lead to promising models to predict ICU death in moderate/severe ARDS patients. More research is needed to identify markers for severity beyond clinical determinants, such as demographics, comorbidities, lung mechanics, oxygenation, and extrapulmonary organ failure to guide patient management.


Asunto(s)
Síndrome de Dificultad Respiratoria , Humanos , Unidades de Cuidados Intensivos , Pulmón , Estudios Prospectivos , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia
13.
Respir Res ; 24(1): 177, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415141

RESUMEN

BACKGROUND: Sepsis and associated organ failures confer substantial morbidity and mortality. Xanthine oxidoreductase (XOR) is implicated in the development of tissue oxidative damage in a wide variety of respiratory and cardiovascular disorders including sepsis and sepsis-associated acute respiratory distress syndrome (ARDS). We examined whether single nucleotide polymorphisms (SNPs) in the XDH gene (encoding XOR) might influence susceptibility to and outcome in patients with sepsis. METHODS: We genotyped 28 tag SNPs in XDH gene in the CELEG cohort, including 621 European American (EA) and 353 African American (AA) sepsis patients. Serum XOR activity was measured in a subset of CELEG subjects. Additionally, we assessed the functional effects of XDH variants utilizing empirical data from different integrated software tools and datasets. RESULTS: Among AA patients, six intronic variants (rs206805, rs513311, rs185925, rs561525, rs2163059, rs13387204), in a region enriched with regulatory elements, were associated with risk of sepsis (P < 0.008-0.049). Two out of six SNPs (rs561525 and rs2163059) were associated with risk of sepsis-associated ARDS in an independent validation cohort (GEN-SEP) of 590 sepsis patients of European descent. Two common SNPs (rs1884725 and rs4952085) in tight linkage disequilibrium (LD) provided strong evidence for association with increased levels of serum creatinine (Padjusted<0.0005 and 0.0006, respectively), suggesting a role in increased risk of renal dysfunction. In contrast, among EA ARDS patients, the missense variant rs17011368 (I703V) was associated with enhanced mortality at 60-days (P < 0.038). We found higher serum XOR activity in 143 sepsis patients (54.5 ± 57.1 mU/mL) compared to 31 controls (20.9 ± 12.4 mU/mL, P = 1.96 × 10- 13). XOR activity was associated with the lead variant rs185925 among AA sepsis patients with ARDS (P < 0.005 and Padjusted<0.01). Multifaceted functions of prioritized XDH variants, as suggested by various functional annotation tools, support their potential causality in sepsis. CONCLUSIONS: Our findings suggest that XOR is a novel combined genetic and biochemical marker for risk and outcome in patients with sepsis and ARDS.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Xantina Deshidrogenasa/genética , Genotipo , Polimorfismo de Nucleótido Simple/genética , Sepsis/diagnóstico , Sepsis/genética , Sepsis/complicaciones
14.
J Clin Med ; 12(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37297908

RESUMEN

Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that arises from multiple causes, including sepsis, pneumonia, trauma, and severe coronavirus disease 2019 (COVID-19). Given the heterogeneity of causes and the lack of specific therapeutic options, it is crucial to understand the genetic and molecular mechanisms that underlie this condition. The identification of genetic risks and pharmacogenetic loci, which are involved in determining drug responses, could help enhance early patient diagnosis, assist in risk stratification of patients, and reveal novel targets for pharmacological interventions, including possibilities for drug repositioning. Here, we highlight the basis and importance of the most common genetic approaches to understanding the pathogenesis of ARDS and its critical triggers. We summarize the findings of screening common genetic variation via genome-wide association studies and analyses based on other approaches, such as polygenic risk scores, multi-trait analyses, or Mendelian randomization studies. We also provide an overview of results from rare genetic variation studies using Next-Generation Sequencing techniques and their links with inborn errors of immunity. Lastly, we discuss the genetic overlap between severe COVID-19 and ARDS by other causes.

15.
J Allergy Clin Immunol ; 152(3): 799-806.e6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37301411

RESUMEN

BACKGROUND: The upper-airway microbiome is involved in asthma exacerbations despite inhaled corticosteroid (ICS) treatment. Although human genetics regulates microbiome composition, its influence on asthma-related airway bacteria remains unknown. OBJECTIVE: We sought to identify genes and biological pathways regulating airway-microbiome traits involved in asthma exacerbations and ICS response. METHODS: Saliva, nasal, and pharyngeal samples from 257 European patients with asthma were analyzed. The association of 6,296,951 genetic variants with exacerbation-related microbiome traits despite ICS treatment was tested through microbiome genome-wide association studies. Variants with 1 × 10-4 

Asunto(s)
Antiasmáticos , Asma , Humanos , Antiasmáticos/uso terapéutico , Estudio de Asociación del Genoma Completo , FN-kappa B/genética , Administración por Inhalación , Asma/tratamiento farmacológico , Asma/genética , Corticoesteroides/uso terapéutico , Genética Humana , Citidina Desaminasa , Antígenos de Histocompatibilidad Menor , Proteínas Portadoras/genética
16.
Pulmonology ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37236906

RESUMEN

INTRODUCTION AND OBJECTIVES: Asthma is a chronic inflammatory disease of the airways. Asthma patients may experience potentially life-threatening episodic flare-ups, known as exacerbations, which may significantly contribute to the asthma burden. The Pi*S and Pi*Z variants of the SERPINA1 gene, which usually involve alpha-1 antitrypsin (AAT) deficiency, had previously been associated with asthma. The link between AAT deficiency and asthma might be represented by the elastase/antielastase imbalance. However, their role in asthma exacerbations remains unknown. Our objective was to assess whether SERPINA1 genetic variants and reduced AAT protein levels are associated with asthma exacerbations. MATERIALS AND METHODS: In the discovery analysis, SERPINA1 Pi*S and Pi*Z variants and serum AAT levels were analyzed in 369 subjects from La Palma (Canary Islands, Spain). As replication, genomic data from two studies focused on 525 Spaniards and publicly available data from UK Biobank, FinnGen, and GWAS Catalog (Open Targets Genetics) were analyzed. The associations between SERPINA1 Pi*S and Pi*Z variants and AAT deficiency with asthma exacerbations were analyzed with logistic regression models, including age, sex, and genotype principal components as covariates. RESULTS: In the discovery, a significant association with asthma exacerbations was found for both Pi*S (odds ratio [OR]=2.38, 95% confidence interval [CI]= 1.40-4.04, p-value=0.001) and Pi*Z (OR=3.49, 95%CI=1.55-7.85, p-value=0.003)Likewise, AAT deficiency was associated with a higher risk for asthma exacerbations (OR=5.18, 95%CI=1.58-16.92, p-value=0.007) as well as AAT protein levels (OR= 0.72, 95%CI=0.57-0.91, p-value=0.005). The Pi*Z association with exacerbations was replicated in samples from Spaniards with two generations of Canary Islander origin (OR=3.79, p-value=0.028), and a significant association with asthma hospitalizations was found in the Finnish population (OR=1.12, p-value=0.007). CONCLUSIONS: AAT deficiency could be a potential therapeutic target for asthma exacerbations in specific populations.

17.
Biomedicines ; 11(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36979655

RESUMEN

Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response (BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity. Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs) and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1 and a genome-wide significance threshold of p < 9 × 10-8 were used to control for false-positive results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples (coefficient= -0.015, p = 2.53 × 10-9) and nominally associated in nasal samples (coefficient = -0.015, p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified 12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment in allergic and inflammatory processes, smoking, and aging was observed. We reported novel associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes.

18.
J Allergy Clin Immunol ; 151(6): 1503-1512, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36796456

RESUMEN

BACKGROUND: Albuterol is the drug most widely used as asthma treatment among African Americans despite having a lower bronchodilator drug response (BDR) than other populations. Although BDR is affected by gene and environmental factors, the influence of DNA methylation is unknown. OBJECTIVE: This study aimed to identify epigenetic markers in whole blood associated with BDR, study their functional consequences by multi-omic integration, and assess their clinical applicability in admixed populations with a high asthma burden. METHODS: We studied 414 children and young adults (8-21 years old) with asthma in a discovery and replication design. We performed an epigenome-wide association study on 221 African Americans and replicated the results on 193 Latinos. Functional consequences were assessed by integrating epigenomics with genomics, transcriptomics, and environmental exposure data. Machine learning was used to develop a panel of epigenetic markers to classify treatment response. RESULTS: We identified 5 differentially methylated regions and 2 CpGs genome-wide significantly associated with BDR in African Americans located in FGL2 (cg08241295, P = 6.8 × 10-9) and DNASE2 (cg15341340, P = 7.8 × 10-8), which were regulated by genetic variation and/or associated with gene expression of nearby genes (false discovery rate < 0.05). The CpG cg15341340 was replicated in Latinos (P = 3.5 × 10-3). Moreover, a panel of 70 CpGs showed good classification for those with response and nonresponse to albuterol therapy in African American and Latino children (area under the receiver operating characteristic curve for training, 0.99; for validation, 0.70-0.71). The DNA methylation model showed similar discrimination as clinical predictors (P > .05). CONCLUSIONS: We report novel associations of epigenetic markers with BDR in pediatric asthma and demonstrate for the first time the applicability of pharmacoepigenetics in precision medicine of respiratory diseases.


Asunto(s)
Asma , Broncodilatadores , Niño , Adulto Joven , Humanos , Adolescente , Adulto , Broncodilatadores/uso terapéutico , Epigenoma , Multiómica , Asma/tratamiento farmacológico , Asma/genética , Asma/metabolismo , Albuterol/uso terapéutico , Metilación de ADN , Estudio de Asociación del Genoma Completo , Fibrinógeno/metabolismo
19.
Sci Rep ; 13(1): 1543, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707634

RESUMEN

Mortality is a frequently reported outcome in clinical studies of acute respiratory distress syndrome (ARDS). However, timing of mortality assessment has not been well characterized. We aimed to identify a crossing-point between cumulative survival and death in the intensive care unit (ICU) of patients with moderate-to-severe ARDS, beyond which the number of survivors would exceed the number of deaths. We hypothesized that this intersection would occur earlier in a successful clinical trial vs. observational studies of moderate/severe ARDS and predict treatment response. We conducted an ancillary study of 1580 patients with moderate-to-severe ARDS managed with lung-protective ventilation to assess the relevance and timing of measuring ICU mortality rates at different time-points during ICU stay. First, we analyzed 1303 patients from four multicenter, observational cohorts enrolling consecutive patients with moderate/severe ARDS. We assessed cumulative ICU survival from the time of moderate/severe ARDS diagnosis to ventilatory support discontinuation within 7-days, 28-days, 60-days, and at ICU discharge. Then, we compared these findings to those of a successful randomized trial of 277 moderate/severe ARDS patients. In the observational cohorts, ICU mortality (487/1303, 37.4%) and 28-day mortality (425/1102, 38.6%) were similar (p = 0.549). Cumulative proportion of ICU survivors and non-survivors crossed at day-7; after day-7, the number of ICU survivors was progressively higher compared to non-survivors. Measures of oxygenation, lung mechanics, and severity scores were different between survivors and non-survivors at each point-in-time (p < 0.001). In the trial cohort, the cumulative proportion of survivors and non-survivors in the treatment group crossed before day-3 after diagnosis of moderate/severe ARDS. In clinical ARDS studies, 28-day mortality closely approximates and may be used as a surrogate for ICU mortality. For patients with moderate-to-severe ARDS, ICU mortality assessment within the first week of a trial might be an early predictor of treatment response.


Asunto(s)
Relevancia Clínica , Síndrome de Dificultad Respiratoria , Humanos , Unidades de Cuidados Intensivos , Respiración Artificial , Pulmón
20.
Thorax ; 78(3): 233-241, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36180068

RESUMEN

BACKGROUND: In the USA, genetically admixed populations have the highest asthma prevalence and severe asthma exacerbations rates. This could be explained not only by environmental factors but also by genetic variants that exert ethnic-specific effects. However, no admixture mapping has been performed for severe asthma exacerbations. OBJECTIVE: We sought to identify genetic variants associated with severe asthma exacerbations in Hispanic/Latino subgroups by means of admixture mapping analyses and fine mapping, and to assess their transferability to other populations and potential functional roles. METHODS: We performed an admixture mapping in 1124 Puerto Rican and 625 Mexican American children with asthma. Fine-mapping of the significant peaks was performed via allelic testing of common and rare variants. We performed replication across Hispanic/Latino subgroups, and the transferability to non-Hispanic/Latino populations was assessed in 1001 African Americans, 1250 Singaporeans and 941 Europeans with asthma. The effects of the variants on gene expression and DNA methylation from whole blood were also evaluated in participants with asthma and in silico with data obtained through public databases. RESULTS: Genomewide significant associations of Indigenous American ancestry with severe asthma exacerbations were found at 5q32 in Mexican Americans as well as at 13q13-q13.2 and 3p13 in Puerto Ricans. The single nucleotide polymorphism (SNP) rs1144986 (C5orf46) showed consistent effects for severe asthma exacerbations across Hispanic/Latino subgroups, but it was not validated in non-Hispanics/Latinos. This SNP was associated with DPYSL3 DNA methylation and SCGB3A2 gene expression levels. CONCLUSIONS: Admixture mapping study of asthma exacerbations revealed a novel locus that exhibited Hispanic/Latino-specific effects and regulated DPYSL3 and SCGB3A2.


Asunto(s)
Asma , Hispánicos o Latinos , Adolescente , Humanos , Asma/genética , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/genética , Polimorfismo de Nucleótido Simple , Estados Unidos/epidemiología , Niño , Americanos Mexicanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...